职位描述
你将作为一名封装工程团队中的封装工艺整合工程师,负责主导新产品从概念设计到验证再到量产的全过程开发。你需要创造新的产品理念,运用工程知识,并将这些想法转化为实际产品。
岗位职责:
- 与位于美国、印度和以色列的全球职能团队紧密合作,对齐新产品封装需求,并在每周会议中同步开发进展。
- 跨部门协作,与本地封装研发及工厂团队合作,评审封装可行性图纸,评估技术风险,进行可制造性(DFM)分析、成本评估、机械仿真及组装工艺特性研究,最终输出在可制造性、良率和质量方面最优的设计方案。
- 执行封装产品验证计划,跟踪封装可靠性状态,及时调查并解决失效问题;在工程样品、客户样品及小批量生产阶段,监控组装及测试良率,推动良率提升并管理异常处理。
- 主导新产品从小批量到大批量生产的导入;确保良率和质量达成目标;在进入量产前,确保FMEA、封装工艺控制计划、工艺配方指引及其他相关控制措施已就绪。
- 与内部IT团队合作,开发工程数据自动化平台;维护现有新产品开发系统;通过深入的数据分析和机器学习,持续探索效率提升及决策支持的机会。
任职要求:
- 本科及以上学历,材料科学、机械工程或相关专业背景;
- 优秀的英语沟通能力和问题解决能力;
- 自我驱动,能够在跨职能团队中承受压力并高效工作;
- 熟悉编程语言(如 Python、SQL)者优先。
You will work as an assembly process integration engineer inside the packaging engineering group. Leads new product development from concept design to qualification and eventually to mass production. Create new product ideas, apply your engineering knowledge, and turn your ideas into actual products.
Responsibilities:
- Work closely with global functional teams in US, Indian, and Israel, align new product packaging requirements, and synchronize development status in weekly meetings.
- Work cross-functionally with local package R&D and factory teams, review package feasibility drawings, assess technical risks, evaluate DFM (design for manufacturing), conduct cost analysis, run mechanical simulations, perform assembly process characterizations, and deliver most optimized design in terms of manufacturability, yield, and quality.
- Execute package qualification plan, follow up package reliability status, investigate and close failures on time. Monitor assembly and test yield on engineering/customer samples and low-volume production build. Drive yield improvement and manage excursions.
- Lead new product low volume to high volume production transition; ensure yield and quality meet the goal. Ensure FMEA, assembly process control plan, recipe guideline, and other assembly controls are ready before high-volume production.
- Develop engineering data automation platforms with the internal IT team; Maintain existing new product development systems; Explore opportunities to improve efficiency and facilitate decision-making through in-depth data analysis and machine learning.
Qualifications
- Bachelor above in material science, mechanical engineering, or related field
- Excellent English communication and problem-solving skills
- Self-motivated with ability to work in cross-functional teams under pressure
- Experience with programming languages (e.g., Python, SQL) is a plus